Acta Crystallographica Section E

Structure Reports
 Online

ISSN 1600-5368

Jun Shi

Department of Basic Course, Tianjin Agricultural College, Tianjin 300384, People's Republic of China, and School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China

Correspondence e-mail: shi_jun99@163.com

Key indicators

Single-crystal X-ray study
$T=294 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
R factor $=0.045$
$w R$ factor $=0.120$
Data-to-parameter ratio $=15.3$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

(E)-N-Benzoyl- N^{\prime}-(3-hydroxy-4-methoxybenzylidene)hydrazine

The molecule of the title compound, $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{3}$, is nonplanar. The asymmetric unit contains two independent molecules which are quite distinct from each other. Two bifurcated intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds help to establish the molecular conformation and consolidate the crystal packing.

Comment

Metal complexes based on Schiff bases have attracted much attention because of their biological activity (Kahwa et al., 1986). One of the aims of investigating the structural chemistry of Schiff bases is to develop protein and enzyme mimics (Santos et al., 2001). As part of an investigation of the coordination properties of Schiff bases functioning as ligands, we report the synthesis and structure of the title compound, (I) (Fig. 1).

(I)

The asymmetric unit of (I) contains two independent molecules which are quite distinct from each other. In molecule 1, the isovanillin group ($\mathrm{C} 2-\mathrm{C} 8 / \mathrm{O} 1 / \mathrm{O} 2$) is planar, with an r.m.s. deviation, δ, from the mean plane of 0.020 (2) \AA, and it makes a dihedral angle of 74.12 (5) ${ }^{\circ}$ with the benzene $\mathrm{C} 10-\mathrm{C} 15$ ring. In molecule 2, the isovanillin group ($\mathrm{C} 2-\mathrm{C} 8 / \mathrm{O} 1 / \mathrm{O} 2$) is also planar, with $\delta=0.020(2) \AA$, but it makes a dihedral angle of 24.34 (8) ${ }^{\circ}$ with the C25-C30 benzene ring. The isovanillin groups of the two independent molecules are almost perpendicular to each other, with a dihedral angle of 87.72 (4) ${ }^{\circ}$, while the dihedral angle between the two benzene rings is 14.05 (10) ${ }^{\circ}$.

Two bifurcated intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds and two intermolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds are found (Table 1), which help to establish the molecular conformation and consolidate the crystal packing (Fig. 2).

Experimental

An anhydrous ethanol solution of 3-hydroxy-4-methoxybenzaldehyde ($1.52 \mathrm{~g}, 10 \mathrm{mmol}$) was added to an anhydrous ethanol solution of benzoylhydrazine ($1.36 \mathrm{~g}, 10 \mathrm{mmol}$) and the mixture
stirred at 350 K for 5 h under nitrogen, whereupon a pale-yellow precipitate appeared. The product was then isolated, recrystallized from ethanol, and dried in vacuum to give the pure compound in 86% yield. Colorless single crystals of (I) suitable for X-ray analysis were obtained by slow evaporation of an acetonitrile solution.

Crystal data

$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{3}$
$M_{r}=270.28$
Monoclinic, $P 2_{1} / c$
$a=7.5209(10) \AA$
$b=19.221(3) \AA$
$c=18.971(3) \AA$
$\beta=96.265(2)^{\circ}$
$V=2726.1(7) \AA^{3}$
$Z=8$

$$
D_{x}=1.317 \mathrm{Mg} \mathrm{~m}^{-3}
$$

$M_{r}=270.28$
Monoclinic, $P 2_{1} / c$
$a=7.5209(10) \mathrm{A}$
$b=19.221$ (3) \AA
$c=18.971(3) \AA$
$\beta=96.265(2)^{\circ}$
$V=2726.1(7) \AA^{3}$
$Z=8$
$Z=8$

Data collection

Bruker SMART CCD area-detector	5591 independent reflections
diffractometer	3644 reflections with $I>2 \sigma(I)$
φ and ω scans	$R_{\text {int }}=0.038$
Absorption correction: multi-scan	$\theta_{\max }=26.4^{\circ}$
$\quad(S A D A B S ;$ Sheldrick, 1996 $)$	$h=-8 \rightarrow 9$
$T_{\min }=0.968, T_{\max }=0.985$	$k=-19 \rightarrow 24$
15237 measured reflections	$l=-21 \rightarrow 23$

Mo $K \alpha$ radiation
Cell parameters from 4256 reflections
$\theta=2.4-26.3^{\circ}$
$\mu=0.09 \mathrm{~mm}^{-1}$
$T=294$ (2) K
Block, colorless
$0.28 \times 0.20 \times 0.16 \mathrm{~mm}$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.045$
$w R\left(F^{2}\right)=0.121$
$S=1.01$
5591 reflections
365 parameters
H-atom parameters constrained

Table 1
Hydrogen-bond geometry ($\left(\AA{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 2-\mathrm{H} 2 \cdots \mathrm{O}^{\mathrm{i}}$	0.82	1.85	$2.6739(17)$	180
$\mathrm{O} 5-\mathrm{H} 5 \cdots \mathrm{O}^{\mathrm{ii}}$	0.82	1.94	$2.7521(18)$	175
N2-H2A $\mathrm{O}^{\text {iii }}$	0.86	2.21	$2.867(2)$	133
N2-H2A $\cdots \mathrm{O}^{\text {iii }}$	0.86	2.51	$3.326(2)$	158
N4-H4 $\cdots \mathrm{O}^{\text {iv }}$	0.86	2.26	$3.0206(19)$	147
$\mathrm{~N} 4-\mathrm{H} 4 \cdots \mathrm{O}^{\mathrm{iv}}$	0.86	2.60	$3.309(2)$	140

Symmetry codes: (i) $-x,-y+1,-z$; (ii) $-x+1,-y+2,-z+2$; (iii) $x, y, z-1$; (iv)
$x+1,-y+\frac{3}{2}, z+\frac{1}{2}$.
All H atoms were included in calculated positions and refined using a riding-model approximation. Constrained $\mathrm{C}-\mathrm{H}, \mathrm{O}-\mathrm{H}$ and $\mathrm{N}-\mathrm{H}$ bond lengths and $U_{\text {iso }}(\mathrm{H})$ values are as follows: aromatic $\mathrm{C}-\mathrm{H}$ $=0.93 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C}) ;$ methyl C $-\mathrm{H}=0.96 \AA$ and $U_{\text {iso }}(\mathrm{H})$ $=1.5 U_{\text {eq }}(\mathrm{C}) ; \mathrm{O}-\mathrm{H}=0.82 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{O}) ; \mathrm{N}-\mathrm{H}=0.86 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{N})$.

Data collection: SMART (Bruker, 1999); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL.

Figure 1
The structure of the asymmetric unit of (I) with displacement ellipsoids for non-H atoms drawn at the 30% probability level.

Figure 2
Packing diagram of (I), showing intermolecular hydrogen bonds (dashed lines).

References

Bruker (1999). SMART (Version 5.0) and SAINT (Version 4.0) for Windows NT. Bruker AXS Inc., Madison, Wisconsin, USA.
Kahwa, I. A., Selbin, J., Hsieh, T. C.-Y. \& Laine, R. A. (1986). Inorg. Chim. Acta, 118, 179-185.
Santos, M. L. P., Bagatin, I. A., Pereira, E. M. \& Ferreira, A. M. D. C. (2001). J. Chem. Soc. Dalton Trans. pp. 838-844.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Sheldrick, G. M. (1997b). SHELXTL for Windows NT. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.

